US-Ireland R&D Programme project details:

Project tittle and award details	Lay Abstract
 Title: Ga2O3 Understanding Growth Interfaces and Defects to enable next generation Electronics (GUIDE) Lead applicant: Dr Karim Cherkaoui Co-applicants: Prof Paul Hurley (Rol), Prof Chadwin Young (US), Dr Lorenzo Stella (NI), Prof Robert Wallace (NI), Dr Myrta Gruening (NI), Prof Robert Bowman (NI) Lead Rol institution: Tyndall National Institute 	This is a three-year collaborative project to explore scientific and technological questions, which are relevant to a wide range of potential applications. The project will investigate the fundamental properties of different forms of Ga_2O_3 spanning from amorphous structure to the crystalline beta-phase, relevant to applications such as efficient, cost-effective power electronics or added functions above existing integrated circuits
	In addition, GUIDE will explore the electronic properties of insulating oxides on Ga ₂ O ₃ with varying surface orientations using a new metrology approach to characterize electrically active defect states.
 Value of award including overhead: €452,508 (Direct: €348,660 + Overhead: €103,848) DfE funding £ 299,973 d+o/h NSF funding \$439,603 d+o/h Partner institutions: NI: Queen's University Belfast US: University of Texas at Dallas 	The project will also explore ferroelectric gate oxides on Ga ₂ O ₃ as a potential route to introduce non-volatile memory elements into power electronic circuits. The proposal brings together complementary expertise in the growth, defect metrology and theoretical analysis of semiconductor systems through a partnership of UTD, QUB and Tyndall, and builds upon a strong collaboration developed through the US Ireland Programme over the past 12 years.
	This project will enable the training of graduate students in the US and Ireland and will encourage and support student exchanges between the three institutions.

 Title: Full Atomistic Understanding of Solid-Liquid	This project aims to achieve a thorough
Interfaces via an Integrated Experiment-Theory	understanding of surfaces of electrodes in
Approach Lead applicant: Prof Niall English Co-applicants: Dr Amir Faroukh Payam(NI), and	contact with electrically active liquids. It is
Prof Yingje Zhang and Prof Narayana Aluru (US) Lead Rol institution: University College Dublin Value of award including overhead: €453,814	probing, at the atomic level, how liquids are
(Direct: €349,999 + Overhead: €103,815)	structured at these interfaces, using state-of-
DfE funding £299,970 d+o/h	the-art experiments and computer simulations.
NSF funding \$500,000 k d+o/h Partner institutions:	These experiments and simulations provide
NI: University of Ulster	advanced imaging of the surfaces at an atomic
US: University of Illinois at Urbana-Champaign,	level, and on how this affects the electrostatic
University of Texas at Austin	"personality" of the surface.
 Title: Smart Radio Environments with Reconfigurable Intelligent Surfaces – Communications Through Blockage in Millimeter- wave systems (REFLECT-MMWAVE) Lead applicant: Dr Arman Farhang Co-applicants: Dr Dmitry Zelenchuk and Dr Muhammad Ali Babr Abbasi (NI); Dr Rong-Rong Chen and Dr Mingyue Ji (US) Lead Rol institution: Trinity College Dublin Value of award including overhead: €484,179 (Direct: €374,176 + Overhead: €110,003) DfE funding £285,080 d+o/h NSF funding \$400,000 d+o/h Partner institutions: NI: Queen's University Belfast US: University of Utah 	More and more devices are connected wirelessly. This trend continues to rise at a higher pace with the emergence of new generation of applications and services in future wireless networks. Due to the seamless connectivity and high data rate requirements in a variety of services, very high frequencies are deployed for communication. However, there are lots of challenges when very high frequency bands, e.g., millimetre wave (mmWave) bands, are deployed for communication, such as severe signal blockage. This leads to unreliable communication. Therefore, this project explores an emerging communication paradigm where the propagation of the electromagnetic waves is manipulated in a controllable fashion. This is achieved by using Reconfigurable Intelligent Surfaces (RIS) to solve the signal blockage and hence, improve the overall user experience by improving the reliability of the wireless connections. This contributes towards increased connectivity and reliability of the mmWave wireless networks of the future. REFLECT-MMWAVE project brings together multidisciplinary experts from radio frequency and analogue circuits and antenna design, signal processing, machine learning and communication networks.

Title: AI-EPOCMON: AI-Enabled Point-of-Care Monitoring

Lead applicant: Prof Robert Forster

Co-applicants: Rol: Prof Colin Doherty NI: Dr Saugat Bhattacharyya, Prof Liam McDaid, Dr Muskann Singh. US: Prof Gerard I. Coté, Dr Sam Mabbott

Lead Rol institution: Dublin City University

Value of award including overhead: €892,352 (Direct: €687,209+ Overhead: €205,143) DfE funding £299,999 d+o/h NSF funding \$800,000 d+o/h

Partner institutions: Rol: Trinity College Dublin NI: Ulster University US: Texas A&M University Scientists in Dublin City University, Ulster University and Texas A&M University are developing a low-cost multi-analyte sensor technology - called AI-EPOCMON - to detect the levels of therapeutics in blood and improve the lives of people with epilepsy. The new technology can identify people who are not taking their medication as prescribed, as well as guiding clinicians on optimum drug dosage for people who are medication compliant but are still experiencing symptoms of epilepsy.

Artificial intelligence will be used to maximise the information content generated by the multi-analyte sensor measurements. The technology is designed to operate at the point of need in the community providing rapid, reliable insights and reducing the need for hospital or GP clinic visits.